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This code uses semantic versioning [https://semver.org], though this will strictly
begin when v1.0.0 is officially shipped.


	Free software: MIT license





Features


	Seamless integration with emcee-based MCMC.


	MCMC is easily extensible via the addition of different likelihoods using the same underlying data.







Documentation

See https://21CMMC.readthedocs.org.
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Installation

As may be expected, 21CMMC depends on 21cmFAST, and this has some non-python
dependencies. Thus, you must ensure that these dependencies (usually system-wide ones)
are installed before attempting to install 21CMMC. See
https://21cmfast.readthedocs.org/en/latest/installation for details on these dependencies.

Then follow the instructions below, depending on whether you are a user or developer.


For Users


Note

conda users may want to pre-install the following packages before running
the below installation commands:

conda install numpy scipy click pyyaml cffi astropy h5py







If you are confident that the non-python dependencies are installed, you can simply
install 21CMMC in the usual fashion:

pip install 21CMMC





Note that if 21cmFAST is not installed, it will be installed automatically. There
are several environment variables which control the compilation of 21cmFAST, and these
can be set during this call. See the above installation docs for details.




For Developers

If you are developing 21CMMC, we highly recommend using conda to manage your
environment, and setting up an isolated environment. If this is the case, setting up
a full environment (with all testing and documentation dependencies) should be as easy
as (from top-level dir):

conda env create -f environment_dev.yml





Otherwise, if you are using pip:

pip install -r requirements_dev.txt
pip install -e .





And if you would like to also compile documentation:

pip install -r docs/requirements.txt











          

      

      

    

  

    
      
          
            
  


Tutorials and FAQs

The following introductory tutorials will help you get started with 21CMMC:



	MCMC Introduction
	The Structure of 21MCMC

	Running MCMC

	Analysis





	MCMC with LightCones
	Running MCMC

	Analysis





	MCMC with Multiple Likelihoods
	Setting up cores and likelihoods

	Running MCMC

	Analysis

	Using the Luminosity Function Likelihood









If you’ve covered the tutorials and still have questions about “how to do stuff” in 21CMMC, consult the FAQs:



	MCMC FAQ
	How to Continue Running a Chain After it has Stopped?

	How to store arbitrary data on every iteration of the chain?

	How to add thermal noise to observations/mocks?

	How does 21CMMC deal with parameters outside their range?

	What parameter ranges should I use?

	My run crashed with BrokenProcessPool exception, what is that?

	My run crashed and I don’t know why, can I debug?

	Can I get a history of all parameters trialed in the MCMC?

	Can I interactively explore my Likelihood after running MCMC?





	Allowed parameter ranges
	Cosmology

	Ionisation astrophysical parameters

	Heating astrophysical parameters





	Writing Cores and Likelihoods

	How do I write a Core Module?
	A Visibility Core Example





	How do I write a Likelihood Module?









          

      

      

    

  

    
      
          
            
  


MCMC Introduction


[1]:






%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

from py21cmmc import analyse
from py21cmmc import mcmc
import py21cmmc as p21mc

%load_ext autoreload
%autoreload 2







In this notebook we demonstrate how to do the simplest possible MCMC to fit just two astrophysical parameters to a series of coeval brightness temperature boxes without noise, and then visualise the results.

This tutorial will introduce the basic components of using py21cmmc for doing MCMC to fit parameters. For more advanced topics, see the relevant tutorials, guides or FAQs.


[3]:






p21mc.__version__








[3]:







'1.0.0dev'







The Structure of 21MCMC

As a bit of a primer, we discuss some of the implementation structure for how likelihoods are actually evaluated in 21CMMC. Understanding this structure will help to identify any issues that may arise, construct useful likelihoods, utilise the various options that the built-in structures have, and eventually to create your own (see XXX for more details of how to do this).

The structure of an MCMC routine in 21CMMC is based on that offered by the cosmoHammer library, but with heavy modifications. This structure is based on a single master LikelihoodComputationChain (let’s just call it the Chain), which houses a number of what we’ll call cores and likelihoods. These are instances of Python classes which can be named arbitrarily (and in principle do not need to be subclassed from any particular object), but follow a minimal API, which we’ll
outline shortly. In short, any Chain requires at least one core, and at least one likelihood. Multiples of each are allowed and will work together seamlessly.

Any MCMC should be run using the run_mcmc function in 21CMMC. While the MCMC can be run manually by setting up a Chain with its cores and likelihoods, there are various pitfalls and gotchas associated with this that usually make it easier just to use the in-built function. This function will take a list of cores and likelihoods, along with some specifications of how the MCMC is to proceed, set up a Chain, run the MCMC sampling, and return the Chain object
to you.

Thus, almost all of the flexibility of 21CMMC lies in the construction of the various core and likelihood modules.


Core and Likelihood Modules

Let’s briefly discuss these important core and likelihood modules – the philosophy behind them, and what they can and can’t do. We’ll leave a discussion of how to go about implementing your own for another tutorial.

The basic idea behind core and likelihood modules is that the cores are supposed to do the calculations to fill up what is called a context dictionary on every iteration of the MCMC. The likelihoods then use the contents of this context to evaluate a likelihood (this ends up being the sum of the likelihood returned by each likelihood module).

In practice, there is no hard-and-fast limit to the scope of the core or likelihood: the core could evaluate the likelihood itself, store it in the context, and the likelihood could merely access and return it. Likewise, the core could do nothing, and let the likelihood perform the entire calculation.

For practical and philosophical reasons, however there are a few properties of each which dictate how best to separate the work that each kind of module does:


	All core modules constructively interfere. That is, they are invoked in sequence, and the output of one propagates as potential input to the next. The various quantities that are computed by the cores are not over-written (unless specifically directed to), but are rather accumulated.


	Conversely, all likelihood modules are invoked after all of the core modules have been invoked. Each likelihood module is expected to have access to all information from the sequency of cores, and is expected not to modify that information. The operation of each likelihood is thus in principle independent of each of the other likelihoods. This implies that the total posterior is the sum of each of the likelihoods, which are considered statistically independent.


	Due to the first two points, we consider cores as constructive and likelihoods as reductive. That is, it is most useful to put calculations that build data given a set of parameters in cores, and operations that reduce that data to some final form (eg. a power spectrum) in the likelihoods. This is because a given dataset, produced by the accumulation of cores, may yield a number of independent likelihoods, while these likelihoods may be equally valid
for a range of different data models (eg. inclusion or exclusion of various systematic effects).


	Point 3 implies that it is cleanest if all operations that explicitly require the model parameters occur in cores. The reduction of data should not in general be model-dependent. In practice, the current parameters are available in the likelihoods, but we consider it cleaner if this can be separated.


	In general, as both the cores and likelihoods are used to build a probabilistic model which can be used to evaluate the likelihood of given data, both of their output should in principle be deterministic with respect to input parameters. Nevertheless, one may consider the process as a forward-model, and a forward-model is able to produce mock data. Indeed, 21CMMC adds a framework to the base cosmoHammer for producing such mock data, which are inherently stochastic. A
useful way to conceptualize the separation of core and likelihood is to ensure that all stochasticity can in principle be added in the core, and that the likelihood should have no aspect of randomness in any of its calculations. The likelihood should reduce real/mock data in the same way that it reduces model data.




Given these considerations, the core modules that are implemented within 21CMMC perform 21cmFAST simulations and add these large datasets to the context, while the various likelihoods will use this “raw” data and compress it down to a likelihood – either by taking a power spectrum, global average or some other reduction.

Some of the features of cores as implemented in 21CMMC are the following. Each core: * has access to the entire Chain in which it is embedded (if it is indeed embedded), which enables sharing of information between cores (and ensuring that they are consistent with one another, if applicable). * has access to the names of the parameters which are currently being constrained. * is enabled for equality testing with other cores. * has a special method (and runtime
parameters) for storing arbitrary data in the Chain on a per-iteration basis (see the advanced MCMC FAQ for more info). * has an optional method for converting a data model into a “mock” (i.e. incorporating a random component), which can be used to simulate mock data for consistency testing.

Some of the features of likelihoods as implemented in 21CMMC are that each likelihood: * also has access to the Chain and parameter names, as well as equality testing, like the cores. * computes the likelihood in two steps: first reducing model data to a “final form”, and then computing the likelihood from this form (eg. reducing a simulation cube to a 1D power spectrum, and then computing a \(\chi^2\) likelihood on the power spectrum). This enables two things: (i)
production and saving of reduced mock data, which can be used directly for consistency tests, and (ii) the ability to use either raw data or reduced data as input to the likelihood. * has methods for loading data and noise from files. * has the ability to check that a list of required_cores are loaded in the Chain.






Running MCMC

Enough discussion, let’s create our core and likelihood. In this tutorial we use a single core – one which evaluates the coeval brightness temperature field at an arbitrary selection of redshifts, and a single likelihood – one which reduces the 3D field(s) into a 1D power spectrum/spectra and evaluates the likelihood based on a \(\chi\)-square fit to data.


[4]:






core = p21mc.CoreCoevalModule( # All core modules are prefixed by Core* and end with *Module
    redshift = [7,8,9],          # Redshifts of the coeval fields produced.
    user_params = dict(       # Here we pass some user parameters. Also cosmo_params, astro_params and flag_options
        HII_DIM = 50,         # are available. These specify only the *base* parameters of the data, *not* the
        BOX_LEN = 125.0       # parameters that are fit by MCMC.
    ),
    regenerate=False          # Don't regenerate init_boxes or perturb_fields if they are already in cache.
) # For other available options, see the docstring.

# Now the likelihood...
datafiles = ["data/simple_mcmc_data_%s.npz"%z for z in core.redshift]

likelihood = p21mc.Likelihood1DPowerCoeval(  # All likelihood modules are prefixed by Likelihood*
    datafile = datafiles,                   # All likelihoods have this, which specifies where to write/read data
    noisefile= None,                        # All likelihoods have this, specifying where to find noise profiles.
    logk=False,                             # Should the power spectrum bins be log-spaced?
    min_k=0.1,                              # Minimum k to use for likelihood
    max_k=1.0,                              # Maximum ""
    simulate = True,                        # Simulate the data, instead of reading it in.
                                            # will be performed.
) # For other available options, see the docstring







Now we have all we need to start running the MCMC. The most important part of the call to run_mcmc is the specification of params, which specifies which are the parameters to be fit. This is passed as a dictionary, where the keys are the parameter names, and must come from either cosmo_params or astro_params, and be of float type. The values of the dictionary are length-4 lists: (guess, min, max, width). The first specifies where the best guess of the true value lies,
and the initial walkers will be chosen around here. The min/max arguments provide upper and lower limits on the parameter, outside of which the likelihood will be -infinity. The width affects the initial distribution of walkers around the best-guess (it does not influence any kind of “prior”).

Finally, the model_name merely affects the file name of the output chain data, along with the datadir argument.


[5]:






model_name = "SimpleTest"

chain = mcmc.run_mcmc(
    core, likelihood,        # Use lists if multiple cores/likelihoods required. These will be eval'd in order.
    datadir='data',          # Directory for all outputs
    model_name=model_name,   # Filename of main chain output
    params=dict(             # Parameter dict as described above.
        HII_EFF_FACTOR = [30.0, 10.0, 50.0, 3.0],
        ION_Tvir_MIN = [4.7, 4, 6, 0.1],
    ),
    walkersRatio=3,         # The number of walkers will be walkersRatio*nparams
    burninIterations=0,      # Number of iterations to save as burnin. Recommended to leave as zero.
    sampleIterations=150,    # Number of iterations to sample, per walker.
    threadCount=6,           # Number of processes to use in MCMC (best as a factor of walkersRatio)
    continue_sampling=False  # Whether to contine sampling from previous run *up to* sampleIterations.
)













/home/steven/miniconda3/envs/21CMMC/lib/python3.7/site-packages/powerbox/dft.py:121: UserWarning: You do not have pyFFTW installed. Installing it should give some speed increase.
  warnings.warn("You do not have pyFFTW installed. Installing it should give some speed increase.")
2019-11-15 12:25:59,295 | WARNING | likelihood.py::_write_data() | File data/simple_mcmc_data_7.npz already exists. Moving previous version to data/simple_mcmc_data_7.npz.bk
2019-11-15 12:25:59,297 | WARNING | likelihood.py::_write_data() | File data/simple_mcmc_data_8.npz already exists. Moving previous version to data/simple_mcmc_data_8.npz.bk
2019-11-15 12:25:59,298 | WARNING | likelihood.py::_write_data() | File data/simple_mcmc_data_9.npz already exists. Moving previous version to data/simple_mcmc_data_9.npz.bk









Analysis


Accessing chain data

The full chain data, as well as any stored data (as “blobs”) is available within the chain as the samples attribute. If access to this “chain” object is lost (eg. the MCMC was run via CLI and is finished), an exact replica of the store object can be read in from file. Unified access is provided through the get_samples function in the analyse module. Thus all these are equivalent:


[6]:






samples1 = chain.samples

samples2 = analyse.get_samples(chain)

samples3 = analyse.get_samples("data/%s"%model_name)

# Equivalent:
# samples = analyse.get_samples("data/%s"%model_name)








[7]:






print(np.all(samples1.accepted == samples2.accepted))
print(np.all(samples1.accepted == samples3.accepted))













True
True






Do note that while the first two methods return exactly the same object, occupying the same memory:


[8]:






samples1 is samples2








[8]:







True






this is not true when reading in the samples from file:


[9]:






print(samples1 is samples3)
del samples3; samples=samples1 # Remove unnecessary memory, and rename to samples













False






Several methods are defined on the sample object (which has type HDFStore), to ease interactions. For example, one can access the various dimensions of the chain:


[10]:






niter = samples.size
nwalkers, nparams = samples.shape







We can also check what the parameter names of the run were, and their initial “guess” (this is the first value passed to the “parameters” dictionary in run_mcmc:


[11]:






print(samples.param_names)
print([samples.param_guess[k] for k in samples.param_names])













('HII_EFF_FACTOR', 'ION_Tvir_MIN')
[array([30.]), array([4.7])]






Or one can view how many iterations were accepted for each walker:


[12]:






samples.accepted, np.mean(samples.accepted/niter)








[12]:







(array([106,  98,  95, 105, 109, 109]), 0.6911111111111111)






We can also see what extra data we saved along the way by getting the blob names (see below for more details on this):


[13]:






samples.blob_names








[13]:







('k_z7', 'delta_z7', 'k_z8', 'delta_z8', 'k_z9', 'delta_z9')






Finally, we can get the actual chain data, using get_chain and friends. However, this is best done dynamically, as the samples object itself does not hold the chain in memory, rather transparently read it from file when accessed.




Trace Plot

Often, for diagnostic purposes, the most useful plot to start with is the trace plot. This enables quick diagnosis of burnin time and walkers that haven’t converged. The function in py21cmmc by default plots the log probability along with the various parameters that were fit. It also supports setting a starting iteration, and a thinning amount.


[14]:






analyse.trace_plot(samples, include_lnl=True, start_iter=0, thin=1, colored=False, show_guess=True);












[image: ../_images/tutorials_mcmc_intro_33_0.png]







Corner Plot

One of the most useful plots to come out of an MCMC analysis is the “corner” plot, which shows the correlation of each parameter with every other parameter. The function in py21cmmc will by default also show the original “guess” for each parameter as a blue line, and also show the log-likelihood as a psuedo-“parameter”, though this can be turned off.


[15]:






samples.param_guess








[15]:







array([(30., 4.7)],
      dtype=[('HII_EFF_FACTOR', '<f8'), ('ION_Tvir_MIN', '<f8')])







[16]:






analyse.corner_plot(samples);












[image: ../_images/tutorials_mcmc_intro_37_0.png]







Model Comparison Plot

Another plot of interest is a “model comparison” plot – i.e. comparing the range of outputted models to the data itself. These will differ significantly depending on the kind of data produced by the likelihood function, and thus they depend also on the actual data used. We thus do not provide a general function for plotting this. We do however show how one might go about this task in the function below.

First, however, we show how one might interact with the data and saved models/blobs.

To extract all blob data from the samples:


[17]:






blobs = samples.get_blobs()







For simplicity, let’s extract each kind of blob from the blob structured array:


[18]:






k = blobs['k_z7']
model_power = blobs['delta_z7'], blobs['delta_z8'], blobs['delta_z9']

print(k.shape, model_power[0].shape)
nk = k.shape[-1]













(150, 6, 22) (150, 6, 22)






Here we notice that k should be the same on each iteration, so we take just the first:


[19]:






print(np.all(k[0] == k[1]))
k = k[0]













True






Finally, we also want to access the data to which the models have been compared. Since we have access to the original likelihood object, we can easily pull this from it. However, we equivalently could have read it in from file (this file is not always present, only if datafile is present in the likelihood constructor):


[20]:






p_data = np.array([d['delta'] for d in likelihood.data])
k_data = np.array([d['k'] for d in likelihood.data])

# Equivalent
# data = np.genfromtxt("simple_mcmc_data.txt")
# k_data = data[:,0]
# p_data = data[:,1:]







Now, let’s define a function which will plot our model comparison:


[21]:






def model_compare_plot(samples, p_data, k_data, thin=1, start_iter=0):
    chain = samples.get_chain(thin=thin, discard=start_iter, flat=True)
    blobs = samples.get_blobs(thin=thin, discard=start_iter, flat=True)

    k = blobs['k_z7'][0]
    model_power = [blobs[name] for name in samples.blob_names if name.startswith("delta_")]

    print(k.shape)

    nz = len(model_power)
    nk = k.shape[-1]

    fig, ax = plt.subplots(1, nz, sharex=True, sharey=True, figsize=(6*nz, 4.5),
                          subplot_kw={"xscale":'log', "yscale":'log'}, gridspec_kw={"hspace":0.05, 'wspace':0.05},
                          squeeze=False)

    for i in range(nz):
        this_power = model_power[i]
        this_data = p_data[i]

        label="models"

        for pp in this_power:
            ax[0,i].plot(k, pp, color='k', alpha=0.2, label=label, zorder=1)
            if label:
                label=None

        mean = np.mean(this_power, axis=0)
        std = np.std(this_power, axis=0)
        md = np.median(this_power, axis=0)

        ax[0,i].fill_between(k, mean - std, mean+std, color="C0", alpha=0.6)
        ax[0,i].plot(k, md, color="C0", label="median model")

        ax[0,i].errorbar(k_data, this_data, yerr = (0.15*this_data), color="C1",
                     label="data", ls="None", markersize=5, marker='o')

        ax[0,i].set_xlabel("$k$ [Mpc$^{-3}$]", fontsize=15)
        ax[0,i].text(0.1, 0.86, "z=%s"%core.redshift[i], transform=ax[0,i].transAxes, fontsize=15, fontweight='bold')

    ax[0,0].legend(fontsize=12)
    #plt.ylim((3.1e2, 3.5e3))


    ax[0,0].set_ylabel("$\Delta^2_{21}$", fontsize=15)

#plt.savefig(join(direc, modelname+"_power_spectrum_plot.pdf"))








[22]:






model_compare_plot(samples, p_data, k_data[0], thin=10)













(22,)











[image: ../_images/tutorials_mcmc_intro_50_1.png]












          

      

      

    

  

    
      
          
            
  


MCMC with LightCones


[3]:






%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

from py21cmmc import analyse
from py21cmmc import mcmc
import py21cmmc as p21mc

%load_ext autoreload
%autoreload 2

import logging
print("Version of py21cmmc: ", p21mc.__version__)













Version of py21cmmc:  1.0.0dev






In this tutorial we demonstrate how to do MCMC with a lightcone, to fit just two astrophysical parameters without noise, and then visualise the results. This tutorial follows a very similar pattern to the MCMC intro, and you should follow that one first.


Running MCMC

To perform an MCMC on a lightcone is very similar to a Coeval cube. Merely use the CoreLightConeModule as the core module, and the Likelihood1DPowerLightcone as the likelihood. One extra parameter to the core is available – max_redshift, which specifies the approximate upper limit on the lightcone’s depth. Note that this does not necessarily specify the maximum redshift at which the ionization will be computed (this is specified by z_heat_max), it merely specifies
where to start saving the ionization boxes into a lightcone.

Furthermore, one extra parameter to the likelihood is available – nchunks – which allows to break the full lightcone up into independent chunks for which the power spectrum will be computed.

Thus, for example:


[5]:






core = p21mc.CoreLightConeModule( # All core modules are prefixed by Core* and end with *Module
    redshift = 7.0,              # Lower redshift of the lightcone
    max_redshift = 9.0,          # Approximate maximum redshift of the lightcone (will be exceeded).
    user_params = dict(
        HII_DIM = 50,
        BOX_LEN = 125.0
    ),
    z_step_factor=1.04,          # How large the steps between evaluated redshifts are (log).
    z_heat_max=18.0,             # Completely ineffective since no spin temp or inhomogeneous recombinations.
    regenerate=False
) # For other available options, see the docstring.

# Now the likelihood...
datafiles = ["data/lightcone_mcmc_data_%s.npz"%i for i in range(4)]
likelihood = p21mc.Likelihood1DPowerLightcone(  # All likelihood modules are prefixed by Likelihood*
    datafile = datafiles,        # All likelihoods have this, which specifies where to write/read data
    logk=False,                 # Should the power spectrum bins be log-spaced?
    min_k=0.1,                  # Minimum k to use for likelihood
    max_k=1.0,                  # Maximum ""
    nchunks = 4,                 # Number of chunks to break the lightcone into
    simulate=True
) # For other available options, see the docstring







Actually run the MCMC:


[ ]:






model_name = "LightconeTest"

chain = mcmc.run_mcmc(
    core, likelihood,        # Use lists if multiple cores/likelihoods required. These will be eval'd in order.
    datadir='data',          # Directory for all outputs
    model_name=model_name,   # Filename of main chain output
    params=dict(             # Parameter dict as described above.
        HII_EFF_FACTOR = [30.0, 10.0, 50.0, 3.0],
        ION_Tvir_MIN = [4.7, 4, 6, 0.1],
    ),
    walkersRatio=3,         # The number of walkers will be walkersRatio*nparams
    burninIterations=0,      # Number of iterations to save as burnin. Recommended to leave as zero.
    sampleIterations=100,    # Number of iterations to sample, per walker.
    threadCount=2,           # Number of processes to use in MCMC (best as a factor of walkersRatio)
    continue_sampling=False,  # Whether to contine sampling from previous run *up to* sampleIterations.
    log_level_stream=logging.DEBUG
)













/home/steven/miniconda3/envs/21CMMC/lib/python3.7/site-packages/powerbox/dft.py:121: UserWarning: You do not have pyFFTW installed. Installing it should give some speed increase.
  warnings.warn("You do not have pyFFTW installed. Installing it should give some speed increase.")
2019-09-30 18:33:22,616 INFO:Using CosmoHammer 0.6.1
2019-09-30 18:33:22,617 INFO:Using emcee 2.2.1
2019-09-30 18:33:22,630 INFO:all burnin iterations already completed
2019-09-30 18:33:22,633 INFO:Sampler: <class 'py21cmmc.cosmoHammer.CosmoHammerSampler.CosmoHammerSampler'>
configuration:
  Params: [30.   4.7]
  Burnin iterations: 0
  Samples iterations: 100
  Walkers ratio: 3
  Reusing burn in: True
  init pos generator: SampleBallPositionGenerator
  stop criteria: IterationStopCriteriaStrategy
  storage util: <py21cmmc.cosmoHammer.storage.HDFStorageUtil object at 0x7f333044b358>
likelihoodComputationChain:
Core Modules:
  CoreLightConeModule
Likelihood Modules:
  Likelihood1DPowerLightcone

2019-09-30 18:33:22,636 INFO:start sampling after burn in
2019-09-30 18:35:04,787 INFO:Iteration finished:10
2019-09-30 18:36:38,799 INFO:Iteration finished:20
2019-09-30 18:38:18,352 INFO:Iteration finished:30
2019-09-30 18:39:46,722 INFO:Iteration finished:40









Analysis


Accessing chain data

Access the samples object within the chain (see the intro for more details):


[5]:






samples = chain.samples










Trace Plot

Often, for diagnostic purposes, the most useful plot to start with is the trace plot. This enables quick diagnosis of burnin time and walkers that haven’t converged. The function in py21cmmc by default plots the log probability along with the various parameters that were fit. It also supports setting a starting iteration, and a thinning amount.


[6]:






analyse.trace_plot(samples, include_lnl=True, start_iter=0, thin=1, colored=False, show_guess=True);












[image: ../_images/tutorials_mcmc_lightcone_15_0.png]







Corner Plot


[7]:






analyse.corner_plot(samples);












[image: ../_images/tutorials_mcmc_lightcone_17_0.png]







Model Comparison Plot

Extract all blob data from the samples:


[8]:






blobs = samples.get_blobs()







Read in the data:


[9]:






delta_data = [d['delta'] for d in likelihood.data]
k_data = [d['k'] for d in likelihood.data]







Now, let’s define a function which will plot our model comparison:


[10]:






def model_compare_plot(samples, k_data, delta_data, thin=1, start_iter=0):
    chain = samples.get_chain(thin=thin, discard=start_iter, flat=True)
    blobs = samples.get_blobs(thin=thin, discard=start_iter, flat=True)

    ks = [blobs[name] for name in samples.blob_names if name.startswith("k")]
    models = [blobs[name] for name in samples.blob_names if name.startswith("delta")]

    fig, ax = plt.subplots(1, len(ks), sharex=True, sharey=True, figsize=(5*len(ks), 4.5),
                          subplot_kw={"xscale":'log', "yscale":'log'}, gridspec_kw={"hspace":0.05, 'wspace':0.05},
                          squeeze=False)

    for i,(k,model, kd, data) in enumerate(zip(ks,models, k_data, delta_data)):
        label="models"

        for pp in model:
            ax[0,i].plot(k[0], pp, color='k', alpha=0.2, label=label, zorder=1)
            if label:
                label=None

        mean = np.mean(model, axis=0)
        std = np.std(model, axis=0)
        md = np.median(model, axis=0)

        ax[0,i].fill_between(k[0], mean - std, mean+std, color="C0", alpha=0.6)
        ax[0,i].plot(k[0], md, color="C0", label="median model")

        ax[0,i].errorbar(kd, data, yerr = (0.15*data), color="C1",
                     label="data", ls="None", markersize=5, marker='o')

        ax[0,i].set_xlabel("$k$ [Mpc$^{-3}$]", fontsize=15)
        ax[0,i].text(0.5, 0.86, "Chunk %s"%i, transform=ax[0,i].transAxes, fontsize=15, fontweight='bold')

    ax[0,0].legend(fontsize=12)
    #plt.ylim((3.1e2, 3.5e3))


    ax[0,0].set_ylabel("$k^3 P$", fontsize=15)

#plt.savefig(join(direc, modelname+"_power_spectrum_plot.pdf"))








[11]:






model_compare_plot(samples, k_data, delta_data, thin=5)
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MCMC with Multiple Likelihoods


[1]:






%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

from py21cmmc.mcmc import analyse
from py21cmmc import mcmc

%load_ext autoreload
%autoreload 2







In this tutorial we demonstrate two main ideas: how to use the non-power-spectrum likelihoods provided in 21CMMC, and how to use more than one likelihood at a time. The extra likelihoods that we use were called “priors” in previous versions and publications, and they can help break parameter degeneracies in some cases.


[2]:






import py21cmmc
py21cmmc.__version__








[2]:







'0.1.0'







Setting up cores and likelihoods

The various extra likelihoods provided work best (but not exclusively) with a Lightcone core, so we will use them in conjunction with a lightcone likelihood. This is because they typically measure the global average of a quantity (either brightness temperature or neutral fraction) as a function of redshift.

For the core, we take the same as that used in the lightcone MCMC intro:


[3]:






core = mcmc.CoreLightConeModule( # All core modules are prefixed by Core* and end with *Module
    redshift = 5.5,              # Lower redshift of the lightcone
    max_redshift = 8.0,          # Approximate maximum redshift of the lightcone (will be exceeded).
    user_params = dict(
        HII_DIM = 50,
        BOX_LEN = 125.0
    ),
    z_step_factor=1.04,          # How large the steps between evaluated redshifts are (log).
    regenerate=False,
    nchunks=4
) # For other available options, see the docstring.







Now we instantiate several different likelihoods, beginning with the basic 1D power spectrum:


[4]:






# Now the likelihood...
datafiles = ["data/lightcone_mcmc_data_%s.npz"%i for i in range(4)]
likelihood_ps = mcmc.Likelihood1DPowerLightcone(  # All likelihood modules are prefixed by Likelihood*
    datafile = datafiles,        # All likelihoods have this, which specifies where to write/read data
    logk=False,                 # Should the power spectrum bins be log-spaced?
    min_k=0.1,                  # Minimum k to use for likelihood
    max_k=1.0,                  # Maximum ""
    nchunks = 4,                 # Number of chunks to break the lightcone into
    simulate=True
) # For other available options, see the docstring

likelihood_planck = mcmc.LikelihoodPlanck()  # there are no options here, though some class variables
                                             # can be set to change the behaviour (eg. tau_mean, tu_sigma)

likelihood_mcgreer = mcmc.LikelihoodNeutralFraction()  # Again, no required options, though the options
                                                       # redshift, xHI_mean, xHI_sigma can be set. By default
                                                       # they evaluate to the McGreer values.

likelihood_greig = mcmc.LikelihoodGreig()










Running MCMC


[ ]:






model_name = "MultiLikelihoodTest"

chain = mcmc.run_mcmc(
    core, [likelihood_ps, likelihood_mcgreer, likelihood_greig],#, likelihood_planck],
    datadir='data',          # Directory for all outputs
    model_name=model_name,   # Filename of main chain output
    params=dict(             # Parameter dict as described above.
        HII_EFF_FACTOR = [30.0, 10.0, 50.0, 3.0],
        ION_Tvir_MIN = [4.7, 4, 6, 0.1],
    ),
    walkersRatio=4,         # The number of walkers will be walkersRatio*nparams
    burninIterations=0,      # Number of iterations to save as burnin. Recommended to leave as zero.
    sampleIterations=100,    # Number of iterations to sample, per walker.
    threadCount=4,           # Number of processes to use in MCMC (best as a factor of walkersRatio)
    continue_sampling=False  # Whether to contine sampling from previous run *up to* sampleIterations.
)













2019-03-27 11:13:34,257 | WARNING | likelihood.py::_write_data() | File data/lightcone_mcmc_data_0.npz already exists. Moving previous version to data/lightcone_mcmc_data_0.npz.bk
2019-03-27 11:13:34,260 | WARNING | likelihood.py::_write_data() | File data/lightcone_mcmc_data_1.npz already exists. Moving previous version to data/lightcone_mcmc_data_1.npz.bk
2019-03-27 11:13:34,263 | WARNING | likelihood.py::_write_data() | File data/lightcone_mcmc_data_2.npz already exists. Moving previous version to data/lightcone_mcmc_data_2.npz.bk
2019-03-27 11:13:34,265 | WARNING | likelihood.py::_write_data() | File data/lightcone_mcmc_data_3.npz already exists. Moving previous version to data/lightcone_mcmc_data_3.npz.bk









Analysis


Accessing chain data

Access the samples object within the chain (see the intro for more details):


[6]:






samples = chain.samples













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-6-b4c91829d4bf> in <module>
----> 1 samples = chain.samples

NameError: name 'chain' is not defined









Trace Plot

Often, for diagnostic purposes, the most useful plot to start with is the trace plot. This enables quick diagnosis of burnin time and walkers that haven’t converged. The function in py21cmmc by default plots the log probability along with the various parameters that were fit. It also supports setting a starting iteration, and a thinning amount.


[7]:






analyse.trace_plot(samples, include_lnl=True, start_iter=0, thin=1, colored=False, show_guess=True);
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Corner Plot


[8]:






analyse.corner_plot(samples);
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Using the Luminosity Function Likelihood

Another Likelihood which can be important in breaking degeneracies is the LikelihoodLuminosityFunction. Let’s create the structure for this:


[ ]:






core_lf = mcmc.CoreLuminosityFunction(
    redshifts = [4, 5, 6],    # Generate luminosity functions at z=4,5,6
    user_params = core.user_params,
)

likelihood_lf = mcmc.LikelihoodLuminosityFunction(
        simulate=True
)













          

      

      

    

  

    
      
          
            
  


MCMC FAQ

This FAQ will cover several “advanced” topics that might come up in the context of doing MCMC with py21cmmc. Throughout we will use the following imports:


[2]:






from py21cmmc import mcmc, __version__
import logging

%matplotlib inline
import matplotlib.pyplot as plt

print("Using version ", __version__, " of 21CMMC.")













0.1.0







How to Continue Running a Chain After it has Stopped?

21CMMC has an inbuilt custom chain storage mechanism which uses h5py. The storage class itself is found here:


[2]:






from py21cmmc.mcmc.cosmoHammer.storage import HDFStorage







This class should not be required to be instantiated directly, however. In any case, this class has in-built mechanisms for detecting which iteration the chain is currently at, and saves the complete random state of the chain at each iteration. Thus, it can be started from wherever it stops (due to an exception, or walltime limits on a shared system). In practice, doing so is as easy as calling run_mcmc with the continue_sampling set to True (which it is by default). One just needs
to ensure that the data directory and model name are consistent so that the previous chain can be located:


[3]:






core = mcmc.CoreCoevalModule(
    redshift = 7.0,
    user_params = {"HII_DIM":40, "BOX_LEN":80.0}
)

likelihood = mcmc.Likelihood1DPowerCoeval(simulate=True) # require simulate=True to explicitly allow simulation







To see what is happening directly from the notebook, we’re going to set the error level of the stream logger to INFO, so that the entire log file is also written to stdout:


[4]:






mcmc.run_mcmc(
    core, likelihood,
    params = {"HII_EFF_FACTOR":[30,20,40,3]},
    datadir='.', model_name='a_model',
    sampleIterations = 10,
    burninIterations = 0,
    walkersRatio = 2,
    log_level_stream = logging.INFO,
    continue_sampling=False
);













Initializing init and perturb boxes for the entire chain... done.












2018-08-07 10:40:35,639 INFO:Using CosmoHammer 0.6.1
2018-08-07 10:40:35,639 INFO:Using emcee 2.2.1
2018-08-07 10:40:35,644 INFO:all burnin iterations already completed
2018-08-07 10:40:35,645 INFO:Sampler: <class 'py21cmmc.mcmc.cosmoHammer.CosmoHammerSampler.CosmoHammerSampler'>
configuration:
  Params: [30]
  Burnin iterations: 0
  Samples iterations: 10
  Walkers ratio: 2
  Reusing burn in: True
  init pos generator: SampleBallPositionGenerator
  stop criteria: IterationStopCriteriaStrategy
  storage util: <py21cmmc.mcmc.cosmoHammer.storage.HDFStorageUtil object at 0x7f0955d2bc18>
likelihoodComputationChain:
Core Modules:
  CoreCoevalModule
Likelihood Modules:
  Likelihood1DPowerCoeval

2018-08-07 10:40:35,646 INFO:start sampling after burn in
2018-08-07 10:40:41,991 INFO:Iteration finished:10
2018-08-07 10:40:41,991 INFO:sampling done! Took: 6.3448s
2018-08-07 10:40:41,992 INFO:Mean acceptance fraction:0.65






Now let’s continue running the chain until 20 iterations:


[5]:






mcmc.run_mcmc(
    core, likelihood,
    params = {"HII_EFF_FACTOR":[30,20,40,3]},
    datadir='.', model_name='a_model',
    sampleIterations = 20,
    walkersRatio = 2,
    burninIterations = 0,
    continue_sampling=True,
    log_level_stream=logging.INFO
);













Initializing init and perturb boxes for the entire chain... done.












2018-08-07 10:40:44,156 INFO:Using CosmoHammer 0.6.1
2018-08-07 10:40:44,157 INFO:Using emcee 2.2.1
2018-08-07 10:40:44,158 INFO:all burnin iterations already completed
2018-08-07 10:40:44,160 INFO:Sampler: <class 'py21cmmc.mcmc.cosmoHammer.CosmoHammerSampler.CosmoHammerSampler'>
configuration:
  Params: [30]
  Burnin iterations: 0
  Samples iterations: 20
  Walkers ratio: 2
  Reusing burn in: True
  init pos generator: SampleBallPositionGenerator
  stop criteria: IterationStopCriteriaStrategy
  storage util: <py21cmmc.mcmc.cosmoHammer.storage.HDFStorageUtil object at 0x7f09394e6fd0>
likelihoodComputationChain:
Core Modules:
  CoreCoevalModule
Likelihood Modules:
  Likelihood1DPowerCoeval

2018-08-07 10:40:44,161 INFO:reusing previous samples: 10 iterations
2018-08-07 10:40:44,166 INFO:start sampling after burn in
2018-08-07 10:40:49,616 INFO:Iteration finished:20
2018-08-07 10:40:49,616 INFO:sampling done! Took: 5.4498s
2018-08-07 10:40:49,617 INFO:Mean acceptance fraction:0.6






Note that continuing the sampling will only complete up to the number of iterations given, rather than doing that number of iterations on that particular call.




How to store arbitrary data on every iteration of the chain?

One may wish to store extra derived quantities along the way while the MCMC is performed. For example, to create an interesting visual of how a lightcone changes with varying MCMC parameters, one may wish to store a slice of the lightcone itself within the MCMC storage file. This can be done in both the core and likelihood steps of the computation.


Storage in the Core

The simplest way to store arbitrary data in the core module is to use the store keyword. This is a dictionary, where each key specifies the name of the resulting data entry in the samples object, and the value is a callable which receives the context, and returns a value from it.

This means that the context can be inspected and arbitrarily summarised before storage. In particular, this allows for taking slices of arrays and saving them. One thing to note is that the context is dictionary-like, but is not a dictionary. The elements of the context are only available by using the get method, rather than directly subscripting the object like a normal dictionary.

An example:


[6]:






storage = {
    "brightness_temp": lambda ctx: ctx.get('brightness_temp')[0].brightness_temp[0,:,:]
}








[7]:






core = mcmc.CoreCoevalModule(
    redshift = 7.0,
    store = storage
)








[8]:






chain = mcmc.run_mcmc(
    core, likelihood,
    params = {"HII_EFF_FACTOR":[30,20,40,3]},
    datadir='.', model_name='storage_model',
    sampleIterations = 5,
    burninIterations = 0,
    walkersRatio = 2,
    continue_sampling=False
);













Initializing init and perturb boxes for the entire chain... done.












/home/steven/Documents/Projects/powerbox/powerbox/tools.py:106: UserWarning: One or more radial bins had no cells within it.
  warnings.warn("One or more radial bins had no cells within it.")






Now we can access the stored blobs within the samples object:


[9]:






blobs = chain.samples.get_blobs()
print(blobs.dtype)













[('brightness_temp', '<f4', (50, 50)), ('power', '<f8', (1, 14)), ('k', '<f8', (14,))]






We can also analyse or plot the blobs:


[10]:






fig, ax = plt.subplots(chain.samples.shape[0], chain.samples.iteration, figsize=(12,5), sharex=True, sharey=True,
                      gridspec_kw={"hspace":0.02, 'wspace':0.02})

bt_slices = blobs['brightness_temp']

for i in range(chain.samples.iteration):
    for j in range(chain.samples.shape[0]): # n walkers
        ax[j,i].imshow(bt_slices[i,j])
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Storage in the Likelihood

To store arbitrary data in the Likelihood components, a dedicated store() method exists. To modify what is stored on each iteration, this method should be overwritten. The store method takes two arguments: model and storage. The first is exactly the output of the simulate method of the Likelihood. It is usually either a dictionary of quantities or a list of such dictionaries. The latter is the storage container which will be internally accessed to write out the
quantities. This just needs to be updated with any quantity of interest. For example, let’s imagine the built-in Likelihood1DPowerLightcone had no defined storage method, and we wanted to store everything in its model (which currently consists of k and delta). We would do the following:


[ ]:






class MyLCModule(core.CoreLightConeModule):
    def store(self, model, storage):
        for i, m in enumerate(model):
            storage.update({k + "_%s" %i : v for k, v in m.items()})







(this is, of course, the actual definition of the method in the source code). The blobs in the stored chain will now include the entries k and delta for each iteration of the chain.






How to add thermal noise to observations/mocks?

By default, both the coeval and lightcone likelihoods provided in 21CMMC do not include any thermal noise or sample variance. The only noise used by default is the modelling uncertainty. One way to add noise is to subclass an existing likelihood and over-write the computeLikelihood method, which can then be implemented with artbirary noise characteristics. We urge this point because 21CMMC is written to be extensible in this manner.

However, there is an easier way to add thermal-like noise to the two basic likelihoods provided in 21CMMC. Both contain a noisefile argument. This should be an existing file, in a numpy .npz format, with at least the arrays “ks” and “errs” defined within it. OR, it can be a list of such files, one for each coeval box or redshift chunk. This format is precisely what is written by 21cmSense, and so that can be natively used to compute the noise characteristics. However, we stress
that any code that produces noise characteristics can be used, and the output simply reformatted into this simple format.

If no such file is provided, the likelihood will assume that no special noise characteristics are being used. There is one caveat to this. If simulate=True, and a define_noise method has been defined on the class, then this will be used to produce the noise properties on-the-fly. It must produce a list of dictionaries, each of which contains the arrays “ks” and “errs”, as above, unless the derived class also over-writes the _write_noise method and the computeLikelihood method
which use this data structure. If a noisefile is provided but does not exist, and the noise has been simulated in this way, it will instead be written to the provided file.

Finally, if for some reason it is not possible to re-format your noise data, you can subclass the likelihood and overwrite the _read_noise method. This method should iterate through a list of files, and return a list of dicts containing the arrays “ks” and “errs”.

As an example of using a noise file in the default manner:


[6]:






core = mcmc.CoreCoevalModule(
    redshift = 7.0,
    user_params = {"HII_DIM":40, "BOX_LEN":80.0}
)

likelihood = mcmc.Likelihood1DPowerCoeval(
    noisefile = "hera127.drift_mod_0.135.npz", # File produced with 21cmSense
    simulate=True
)








[8]:






mcmc.run_mcmc(
    core, likelihood,
    params = {"HII_EFF_FACTOR":[30,20,40,3]},
    datadir='.', model_name='a_noise_model',
    sampleIterations = 10,
    burninIterations = 0,
    walkersRatio = 2,
    log_level_stream = logging.INFO,
    continue_sampling=False
);













Initializing init and perturb boxes for the entire chain...












2018-09-03 12:12:42,279 INFO:Using CosmoHammer 0.6.1
2018-09-03 12:12:42,279 INFO:Using emcee 2.2.1
2018-09-03 12:12:42,283 INFO:all burnin iterations already completed
2018-09-03 12:12:42,285 INFO:Sampler: <class 'py21cmmc.mcmc.cosmoHammer.CosmoHammerSampler.CosmoHammerSampler'>
configuration:
  Params: [30]
  Burnin iterations: 0
  Samples iterations: 10
  Walkers ratio: 2
  Reusing burn in: True
  init pos generator: SampleBallPositionGenerator
  stop criteria: IterationStopCriteriaStrategy
  storage util: <py21cmmc.mcmc.cosmoHammer.storage.HDFStorageUtil object at 0x7fe137d044a8>
likelihoodComputationChain:
Core Modules:
  CoreCoevalModule
Likelihood Modules:
  Likelihood1DPowerCoeval

2018-09-03 12:12:42,286 INFO:start sampling after burn in












 done.
['burnin', 'sample_0']












2018-09-03 12:12:46,359 INFO:Iteration finished:10
2018-09-03 12:12:46,359 INFO:sampling done! Took: 4.0724s
2018-09-03 12:12:46,360 INFO:Mean acceptance fraction:0.4









How does 21CMMC deal with parameters outside their range?

The default behaviour of cosmoHammer is to immediately return -np.inf if the sample parameters on a given iteration/walker are outside their bounds (bounds are specified by the params argument to run_mcmc). A log-likelihood of -inf means that the likelihood is zero, and the sampler will not accept that position. This is completely self-consistent and is the recommended procedure in emcee (on which cosmoHammer is based).

However, in 21CMMC, this can lead to significant inefficiencies due to load balancing. If a process returns instantly, but the MCMC step blocks until all walkers are finished, then that particular processor/thread is essentially idle, and the overall efficiency goes down.

To circumvent this, in 21CMMC we over-load the emcee.EnsembleSampler class, so that new new samples are vetted before passing them to the likelihood function. If a new sample position is outside the range, it is independently re-sampled until it is within range. There is a failsafe max_attempts parameter which will shut down this loop of resampling if no suitable parameters can be found (by default it is set to 100). This means that all processes will be running close to 100% of
the time, increasing the efficiency of the sampling.




What parameter ranges should I use?




My run crashed with BrokenProcessPool exception, what is that?

The BrokenProcessPool exception is a special exception that catches anything that goes really wrong in the underlying C-code – like a segfault. When this happens, it’s basically impossible for Python to know what really went wrong, since these errors are really errors in the compiled code itself and do not conform to standard exceptions. However, this exception gives Python a way to report to you something about the error.

We’ve overloaded the emcee sampler to know about this error and to report about which parameters were being evaluated at the time that something broke. It cannot tell which parameters were actually at fault, but if you test each one of them in turn, you may be able to identify the problem.

Using this information in tandem with DEBUG mode can be particularly helpful.




My run crashed and I don’t know why, can I debug?

There are several ways to debug the runtime behaviour of 21CMMC. While for developers an explicit DEBUG mode is posible, as a user it is much more likely that you will just want to inspect the logging output in order to identify a potential problem. We highly recommend sending any errors through to the development team via github (https://github.com/BradGreig/Hybrid21cm/issues/) and including this logging ouput. So, how to get the logging output?

There are actually three different logs running on any given MCMC run:


	The cosmoHammer log. This gets written to the <filePrefix>.log file, but can also be written to stderr/stdout. It contains information about the computation chain, and keeps a running report of the progress of the sampler. To set which level of logging it reports at, you can specify either/both of logLevel and log_level_stream in run_mcmc. The first changes the level of the file, and the latter the output to screen. It can be set to a string identifier such “DEBUG”, or an
integer, where the lower the integer the more will be printed. See https://docs.python.org/3/library/logging.html#logging-levels for details. A good idea is to set to “DEBUG” when debugging, clearly.


	The 21CMMC log. This is the log of the internal wrapper functions for 21cmFAST, and also the Core’s and Likelihoods. By default, it has only one handler (it writes to screen). Much more information will be printed out if this is set to “DEBUG”. Note that these logs can be manipulated using the standard python logging module. However, as a convenience, to just change the level (from its default of WARNING) in the MCMC, you can pass log_level_21CMMC to run_mcmc.


	The C-code logs. These logs are printed to stderr. By default, the level here is WARNING. However, due to extensive debugging developer-side, there is a lot of information that is logged if the level is DEBUG (or even SUPER_DEBUG or ULTRA_DEBUG!). To change these levels, you need to re-install the package, using the environment variable LOG_LEVEL=DEBUG.




Our advice is to set all of these levels to DEBUG (and maybe SUPER_DEBUG) for the C-code, if your code is crashing there) when something goes awry.




Can I get a history of all parameters trialed in the MCMC?

While the sampler object returned by run_mcmc will contain a full chain of parameter samples from your posterior, it is sometimes helpful to keep a running history of all parameters that were tried, whether they were accepted or not. At this time, we don’t offer a simple function for doing this, but it can be reasonably easily achieved by inspecting the logs. If you set log_level_21CMMC to INFO or less, then the logs will contain entries of New Positions: <params> for each set
of parameters trialed. If you have redirected your log to a file, you can get a list of trialed parameters using something like the following script:


[ ]:






import json
params = []

with open("logfile") as f:
    for line in f:
        if "New Positions:" in line:
            s = line.split(":")[-1]
            params += json.loads(s)










Can I interactively explore my Likelihood after running MCMC?

Sometimes, especially when first building a new likelihood, you may run an MCMC chain, and realise that it doesn’t quite look like what you expect. The easiest way to explore what may have gone wrong would be to re-create the exact same LikelihoodComputationChain and interactively produce the likelihood calculations for a few parameters yourself.

Fortunately, that exact behaviour is provided by the output file “.LCC.yml”. Using the yaml module built in to 21CMMC (which has a few extra representers/constructors than the default one from pyyaml) you can literally read this file in and it will be the entire LikelihoodComputationChain object, which you can explicitly call with new parameters, or otherwise investigate.

One word of caution for those writing their own Cores/Likelihoods: the YAML loader/dumper is slow and is not intended for dealing with large datasets. For this reason, cores and likelihoods work best when their attributes are small in size (eg. the CoreCoevalModule does not save any of simulated data – it merely saves the parameters so that it can be instantly read in from cache at any time).

To partially mitigate this, the YAML file that is written when calling run_mcmc contains the pre-setup class, which should fully define the chain, but often does not have much of the data loaded in. THis choice however means that to use the chain interactively after it is read in, you are required to manually call setup(). Alternatively, one can use the convenience function in analyse.py to read in the file.

Note that this .LCC.yml file is internally used to ensure that when you try to “continue” running a chain that all of the parameters exactly line up so that nothing inconsistent happens. It is saved before running the MCMC, so none of the actual chain parameters are saved into it.

YAML files are meant to be (mostly) human-readable, so you can also just look at it to determine what your setup was long after running it.

An example of how to read in the file interactively:


[ ]:






from py21cmmc import yaml

with open("MyBigModel.LCC.yml") as f:
    lcc = yaml.load(f)

# Call setup to set up the chain properly (this adds data/noise etc.)
lcc.setup()

lnl, blobs = lcc(<parameters>)

core_module = lcc.getCoreModules()[0]
core_module.do_something()







Alternatively, one could do the following:


[ ]:






from py21cmmc.analyse import load_primitive_chain

lcc = load_primitive_chain("MyBigModel")

# No set-up required.

lnl, blobs = lcc(<parameters>)













          

      

      

    

  

    
      
          
            
  


Allowed parameter ranges

The version of 21cmFAST that comes with 21CMMC uses numerous interpolation tables. As such, several parameter
combinations/choices may have restricted ranges. This, in addition to limits set by observations restricts the ranges
for several of the astrophysical parameters that are available within 21CMMC.


Cosmology

At the present only flat cosmologies are allowed as some in-built cosmological functions do not allow for
non-flat cosmologies. This will likely be remedied in the near future. Thus, only the dark matter
energy density (\(\Omega_m\)) is available to be varied as \(\Omega_\Lambda = 1 - \Omega_m\) is enforced.
In all cases, sensible ranges are restricted by Planck and other cosmological probes. For example, see Kern et al., 2017 [https://ui.adsabs.harvard.edu/abs/2017ApJ...848...23K/abstract] for varying cosmology with 21CMMC.


	\(\Omega_m\) - should be allowed to vary across (0, 1]


	\(\Omega_b\) - should be allowed to take any non-zero value


	\(h\) - should be allowed to take any non-zero value


	\(\sigma_8\) - should be allowed to take any non-zero value. Extreme values may cause issues in combination with the astrophysical parameters governing halo mass (either \(M_{min}\) or \(T_{min,vir}\))


	\(n_s\) - should be allowed to take any non-zero value







Ionisation astrophysical parameters

Allowed astrophysical parameter ranges are determined by which parameter set is being used. Dictated by the choice of
USE_MASS_DEPENDENT_ZETA in the FlagOptions struct.

If USE_MASS_DEPENDENT_ZETA = False then the user is selecting the older astrophysical parameterisation for the
ionising sources. These include any of: (i) \(\zeta\) - the ionising efficiency (ii) \(R_{mfp}\) - minimum photon horizon for ionising
photons or (iii) \(T_{min,vir}\) - minimum halo mass for the ionising sources, \(T_{min,vir}\).


	\(\zeta\) - Largest range used thus far was [5,200] in Greig & Mesinger, 2015 [https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.4838G/abstract]. In principle it can be less than 200 or even extended beyond 200. Going below 5 is also plausible, but starts to cause numerical issues.


	\(R_{mfp}\) - Only if INHOMO_RECO=False. Typically [5,20] is adopted. Again, going below 5 Mpc cause numerical problems, but any upper limit is allowed. However, beyond 20 Mpc or so, \(R_{mfp}\) has very little impact on the 21cm power spectrum.


	\(T_{min,vir}\) - Typically [4,6] is selected, corresponding to \(10^4\) - \(10^6\) K corresponding to atomically cooled haloes. It becomes numerically unstable to go beyond \(10^6\) K owing to interpolation tables with respect to halo mass. It is possible to consider \(<10^4\) K, however, in doing so it will generate a discontinuity. Internally, \(T_{min,vir}\) is converted to \(M_{min}\) using Equation 26 of Barkana and Loeb, 2001 [https://arxiv.org/pdf/astro-ph/0010468.pdf] whereby the mean molecular weight, \(\mu\) differs according to the IGM state (\(\mu = 1.22\) for \(<10^4\) K and \(\mu = 0.59\) for \(>10^4\) K)




If USE_MASS_DEPENDENT_ZETA = True then the user is selecting the newest astrophysical parameterisation allowing for mass dependent ionisation efficiency as well as constructing luminosity functions (e.g. Park et al., 2019 [https://ui.adsabs.harvard.edu/abs/2019MNRAS.484..933P/abstract]). This allows an expanded set of astrophysical parameter including: (i) \(f_{\ast,10}\) - star formation efficiency normalised at \(10^{10} M_{\odot}\) (ii) \(\alpha_{\ast}\) - power-law scaling of star formation efficiency with halo mass (iii) \(f_{esc,10}\) - escape fraction normalised at \(10^{10} M_{\odot}\) (iv) \(\alpha_{esc}\) - power-law scaling of escape fraction with halo mass (v) \(M_{turn}\) - Turn-over scale for the minimum halo mass (vi) \(t_{star}\) - Star-formation time scale and (vii) \(R_{mfp}\) - minimum photon horizon for ionising photons.


	\(f_{\ast,10}\) - Typically [-3., 0.] corresponding to a range of \(10^{-3} - 1\). In principle \(f_{\ast,10}\) can exceed unity, as it is the normalisation at \(10^{10} M_{\odot}\) and would depend on the power-law index, \(\alpha_{\ast}\) as to whether or not the star-formation efficiency exceeds unity. However, probably no need to consider this scenario.


	\(\alpha_{\ast}\) - Typically [-0.5,1]. Could be modified for stronger scalings with halo mass.


	\(f_{esc,10}\) - Typically [-3,0.] corresponding to a range of \(10^{-3} - 1\). In principle \(f_{esc,10}\) can exceed unity, as it is the normalisation at \(10^{10} M_{\odot}\) and would depend on the power-law index, \(\alpha_{esc}\) as to whether or not the escape fraction exceeds unity. However, probably no need to consider this scenario.


	\(\alpha_{esc}\) - Typically [-1.0,0.5]. Could be modified for stronger scalings with halo mass.


	\(M_{turn}\) - Typically [8,10] corresponding to a range of \(10^8\) - \(10^{10} M_{\odot}\) . In principle it could be extended, though less physical. To have \(M_{turn} > 10^{10} M_{\odot}\) would begin to be inconsistent with existing observed luminosity functions. Could go lower than \(M_{turn} < 10^{8} M_{\odot}\) though it could begin to clash with internal limits in the code for interpolation tables (which are set to \(M_{min} = 10^6  M_{\odot}\) and \(M_{min} = M_{turn}/50\).


	\(t_{star}\) - Typically (0,1). This is represented as a fraction of the Hubble time. Thus, cannot go beyond this range


	\(R_{mfp}\) - same as above







Heating astrophysical parameters

For the epoch of heating, there are three additional parameters that can be set. These, can only be used if USE_TS_FLUCT=True which performs the heating. These include: (i) \(L_{X<2keV}/SFR\) - the soft-band X-ray luminosity of the heating sources (ii) \(E_{0}\) - the minimum threshold energy for X-rays escaping into the IGM from their host galaxies and (iii) \(\alpha_{X}\) - the power-law spectral index of the X-ray spectral energy distribution function.


	\(L_{X<2keV}/SFR\) - Typically [38, 42], corresponding to a range of \(10^{38} - 10^{42} erg\,s^{-1} M^{-1}_{\odot} yr\). This range could easily be extended depending on the assumed sources. This range corresponds to high mass X-ray binaries.


	\(E_{0}\) - [100, 1500]. Range is in \(eV\) corresponding to 0.1 - 1.5 \(keV\). Luminosity is determined in the soft-band (i.e. < 2 keV), thus wouldn’t want to expand this upper limit too much. Observations limit the lower range to ~0.1 keV.


	\(\alpha_{X}\) - Typically [-2.,2] but depends on the population of sources being considered (i.e. what is producing the X-ray’s). Note, the X-ray SED is defined as \(\propto \nu^{-\alpha_X}\)










          

      

      

    

  

    
      
          
            
  


Writing Cores and Likelihoods


[4]:






import py21cmmc as p21c
from py21cmmc import mcmc








[2]:






p21c.__version__








[2]:







'0.1.0'









How do I write a Core Module?

One of main aims of 21CMMC is to be extensible, so that the basic capabilities provided can be easily applied to new situations. For example, one use-case which may require a custom Core module (the concept of Core and Likelihood modules is introduced in the MCMC Introduction tutorial) is where the “observation” which is being analyzed is not a theoretical simulation box, but a set of interferometric visibilities at predefined baselines.

Since our philosophy is that a Core module should “construct” a model such that it approximates the pre-reduced “observations”, the conversion of the 21cmFAST cube into a set of visibilities should be defined in a new Core.

In principle, the Core module does not need to be subclassed from any particular class, so long as it implements a minimal API. However, we recommend always subclassing from py21cmmc.mcmc.CoreBase, which sets default methods for several of these API components (some of which should almost never have to be changed). For a vanilla Core module, the following methods/attributes are highly recommended to be over-ridden/defined:


	__init__: this is the only place that user-input can be obtained. This method should almost certainly just save input parameters to the instance with the same name, modulo setting default parameters and simple logic.


	build_model_data(ctx): this is the heart of the Core. It is what produces the actual model quantities, which are saved back to the ctx object. The current MCMC parameters are available via ctx.getParams(), and the model quantities should be saved back to the ctx via ctx.add("key", value). These model quantities should be deterministic, as they convey a model, not a mock. They may however include quantities of interest for determining probability distributions on
the model.




The following methods have defaults, but may be required to be over-ridden for particular applications:


	setup: this method, if defined, is run once only (if embedded in a Chain, the Chain checks if it has been previously run and disallows running again) before the beginning of an MCMC. It receives no parameters. In this sense, it is almost equivalent to tacking the operations onto the end of __init__. The difference is that when setup is run, it is generally assumed that the core has been embedded into a Chain, so that access to other cores (and, if loaded earlier
in the core sequence, their respective instance attributes) is available.


	convert_model_to_mock(ctx): this method takes the model output from build_model_dataand computes a mock simulation from it (i.e. it adds the requisite randomness). If not over-ridden, it is a no-op, which implies that data is considered to be deterministic (as far as this core goes). The method is not invoked in a standard MCMC run, but can be used to generate mock data for consistency tests.


	__eq__(self, other): this method should determine if this core instance is identical to another core instance. It is used for checking whether the an MCMC chain can be continued from file (i.e. if it is consistent with what has already been run). It is defined in CoreBase by checking each of the input parameters to __init__, as saved in each instance either as its own name, or its name prefaced by “_”. This list of instance attributes can be supplemented using the
extra_definining_attributes class attribute, and can be filtered with the ignore_attributes class attribute. It is probably rare that the __eq__ method should be required to be overwritten; usually these class attributes should be all that is required.




We can see the various methods/attributes made available by default:


[6]:






cls = mcmc.CoreBase()
help(cls)













Help on CoreBase in module py21cmmc.mcmc.core object:

class CoreBase(ModuleBase)
 |  CoreBase(store=None)
 |
 |  Method resolution order:
 |      CoreBase
 |      ModuleBase
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  __call__(self, ctx)
 |      Call the class. By default, it will just build model data, with no stochasticity.
 |
 |  __init__(self, store=None)
 |      Initialize self.  See help(type(self)) for accurate signature.
 |
 |  build_model_data(self, ctx)
 |      Passed a standard context object, should construct model data and place it in the context.
 |
 |      The data generated by this method should ideally be *deterministic*, so that input parameters (which are
 |      inherently contained in the `ctx` object) map uniquely to output data. The addition of stochasticity in order
 |      to produce mock data is done in the :meth:`~convert_model_to_mock` method. All data necessary to full evaulate
 |      probabilities of mock data from the model data should be determined in this method (including model
 |      uncertainties, if applicable).
 |
 |      Parameters
 |      ----------
 |      ctx : dict-like
 |          The context, from which parameters are accessed.
 |
 |      Returns
 |      -------
 |      dct : dict
 |          A dictionary of data which was simulated.
 |
 |  convert_model_to_mock(self, ctx)
 |      Given a context object containing data from :meth:`~build_model_data`, generate random mock data, which should
 |      represent an exact forward-model of the process under investigation.
 |
 |      Parameters
 |      ----------
 |      ctx : dict-like
 |          The context, from which parameters and other simulated model data can be accessed.
 |
 |  prepare_storage(self, ctx, storage)
 |      Add variables to special dict which cosmoHammer will automatically store with the chain.
 |
 |  simulate_mock(self, ctx)
 |      Generate all mock data and add it to the context.
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from ModuleBase:
 |
 |  __eq__(self, other)
 |      Return self==value.
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from ModuleBase:
 |
 |  __dict__
 |      dictionary for instance variables (if defined)
 |
 |  __weakref__
 |      list of weak references to the object (if defined)
 |
 |  chain
 |      A reference to the LikelihoodComputationChain of which this Core is a part.
 |
 |  parameter_names
 |
 |  ----------------------------------------------------------------------
 |  Data and other attributes inherited from ModuleBase:
 |
 |  __hash__ = None
 |
 |  extra_defining_attributes = []
 |
 |  ignore_attributes = []








A Visibility Core Example

Back to our proposed example of creating a core which evaluates visibilities. There are two ways of doing this. The first is to subclass an original Core class from 21CMMC (in this case, the CoreLightConeModule will be required).

A minimal example would then be:


[ ]:






class MyVisibilityCore(core.CoreLightConeModule):
    def __init__(self, frequencies, baselines,
                 *args, **kwargs # always include *args, **kwargs and call super()
                ):
        # Call super to initialise standard lightcone module
        super().__init__(*args, **kwargs)

        # Add other user-dependent quantities
        self.frequencies = frequencies
        self.baselines = baselines

    def build_model_data(self, ctx):
        # Call the LightConeModule model builder, and add its model to the context.
        super().build_model_data(ctx)

        # Convert the lightcone into visibilities
        vis = convert_lightcone_to_vis(ctx.get("lightcone"))

        # Importantly, add useful quantities to the context, so they are available
        # to the likelihood
        ctx.add("visibilities", vis)

        # Also could clean up any quantities that we don't care about anymore.
        # But it might just be better to leave it there.
        ctx.remove("lightcone")







Another method hinges on the fact that multiple cores can be loaded for a given MCMC chain. In this method, the defined Core is entirely separate from the LightConeModule, but both must be explicitly loaded:


[ ]:






class MyVisibilityCore(mcmc.CoreBase):
    required_cores = [mcmc.CoreLightConeModule]

    def __init__(self, frequencies, baselines, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.frequencies = frequencies
        self.baselines = baselines

    def build_model_data(self, ctx):
        lightcone = ctx.get("lightcone") # Assumes that the LightConeModule is loaded before this one.

        # Convert the lightcone into visibilities
        vis = convert_lightcone_to_vis(lightcone)

        # Importantly, add useful quantities to the context, so they are available
        # to the likelihood
        ctx.add("visibilities", vis)







Which of these is preferred is difficult to determine. The first option is simpler, in that it uses well-worn methods for overwriting components of the original. It can also be generally assumed that if the visibilities are to be used, the original simulation will not be required. It also means that when it comes to actually running the MCMC, only the MyVisibilityCore will need to be loaded. On the other hand, this method requires passing parameters to MyVisibilityCore that actually are
just passed through to CoreLightConeModule, which is perhaps a bit unclean.

TLDR; either will work.

We could supplement either of the above with an additional convert_model_to_mock method, which might add additional complex Gaussian noise to each visibility.






How do I write a Likelihood Module?

If you have read the “Write My Own Core” section just above, then you know how important extensibility is to 21CMMC. This is especially true when it comes to the Likelihood modules (a brief intro to the idea behind cores and likelihoods is given in the MCMC intro).

Likelihoods should inherit from py21cmmc.mcmc.BaseLikelihood, or if you want a simple way to support reading in data and noise from files, py21cmmc.mcmc.BaseLikelihoodFile.

Along with the standard __init__ and setup methods which have very similar functions to their Core counterparts (see previous section), it is recommended to overwrite the following methods:


	reduce_data(ctx): this takes the data produced from all cores, and reduces it to “final form”. This “final form” is essentially defined as the maximally reduced form that can be applied to either data or model separately, before calculating the likelihood from their combination. For instance, it may be to perform an FFT to obtain the power spectrum. It returns the reduced data as a dictionary of quantities.


	computeLikelihood(model): this function takes the model dictionary output by reduce_data and computes a likelihood from it, using the self.data attribute of the instance. The reason for separating these two methods is simple: it allows applying the reduce_data method on both data and model, as well as simulating mock datasets.


	store(model, storage): a method which is called on every MCMC iteration, and passed the model output from reduce_data. It should save this data to a storage dictionary, and it will subsequently be saved to the storage chain file.




If using the BaseLikelihoodFile class, an extra set of methods are available to be over-ridden which define how data and measurement noise should be read in from file. See the docstring or the FAQ on adding noise for details on these methods.

The simplest example of a likelihood would be something like the following:


[ ]:






class MySimpleLikelihood(mcmc.LikelihoodBaseFile):
    def reduce_data(self, ctx):
        k, power_spectrum = convert_to_power(ctx.get("lightcone"))
        return dict(power_spectrum=power_spectrum, k=k)

    def computeLikelihood(self, model):
        return np.sum((self.data["power_spectrum"] - model['power_spectrum'])**2 / (2 * self.noise(['variance'])))







Since we are using the LikelihoodBaseFile, the data is automatically read in from a user-input file. The default read method assumes that the file is a numpy format (.npz), and contains exactly the same quantities that are returned by reduce_data (which allows very easily for simulating mock data and outputting to file, and subsequently reading it back in).

The self.data attribute is defined during setup, and filled with the contents of the input data file, and likewise the self.noise attribute (it comes from a separate noisefile).





          

      

      

    

  

    
      
          
            
  


API Reference



	py21cmmc












          

      

      

    

  

    
      
          
            
  


py21cmmc







	py21cmmc.mcmc

	



	py21cmmc.core

	



	py21cmmc.likelihood

	



	py21cmmc.analyse

	



	py21cmmc.cosmoHammer

	










          

      

      

    

  

    
      
          
            
  


Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.


Bug reports/Feature Requests/Feedback/Questions

It is incredibly helpful to us when users report bugs, unexpected behaviour, or request
features. You can do the following:


	Report a bug [https://github.com/21cmFAST/21cmMC/issues/new?template=bug_report.md]


	Request a Feature [https://github.com/21cmFAST/21cmMC/issues/new?template=feature_request.md]


	Ask a Question [https://github.com/21cmFAST/21cmMC/issues/new?template=question.md]




When doing any of these, please try to be as succinct, but detailed, as possible, and use
a “Minimum Working Example” whenever applicable.




Documentation improvements

21CMMC could always use more documentation, whether as part of the
official 21CMMC docs, in docstrings, or even on the web in blog posts,
articles, and such. If you do the latter, take the time to let us know about it!




High-Level Steps for Development

This is an abbreviated guide to getting started with development of 21CMMC,
focusing on the discrete high-level steps to take. See our
notes for developers [https://21cmmc.readthedocs.org/en/latest/notes_for_developers]
for more details about how to get around the 21CMMC codebase and other
technical details.

There are two avenues for you to develop 21CMMC. If you plan on making significant
changes, and working with 21CMMC for a long period of time, please consider
becoming a member of the 21cmFAST GitHub organisation (by emailing any of the owners
or admins). You may develop as a member or as a non-member.

The difference between members and non-members only applies to the first step
of the development process.

Note that it is highly recommended to work in an isolated python environment with
all requirements installed from requirements_dev.txt. This will also ensure that
pre-commit hooks will run that enforce the black coding style. If you do not
install these requirements, you must manually run black before committing your changes,
otherwise your changes will likely fail continuous integration.

As a member:


	Clone the repo:

git clone git@github.com:21cmFAST/21CMMC.git









As a non-member:


	First fork 21cmFAST [https://github.com/21cmFAST/21CMMC]
(look for the “Fork” button), then clone the fork locally:

git clone git@github.com:your_name_here/21CMMC.git









The following steps are the same for both members and non-members:


	Install a fresh new isolated environment. This can be either a basic virtualenv
or a conda env (suggested). So either:

virtualenv ~/21cmmc
source ~/21cmmc/bin/activate





or:

conda create -n 21cmmc python=3
conda activate 21cmmc







	Install the development requirements for the project. If using the basic virtualenv:

pip install -r requirements_dev.txt





or if using conda (suggested):

conda env update -f environment.yml







	Install pre-commit hooks:

pre-commit install







	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally. Note: as a member, you _must_ do step 5. If you
make changes on master, you will _not_ be able to push them.



	When you’re done making changes, run all the checks, doc builder and spell checker
with tox [http://tox.readthedocs.io/en/latest/install.html] one command:

tox







	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature





Note that if the commit step fails due to a pre-commit hook, most likely the act
of running the hook itself has already fixed the error. Try doing the add and
commit again (up, up, enter). If it’s still complaining, manually fix the errors
and do the same again.



	Submit a pull request through the GitHub website.





Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the
pull request. You can mark the PR as a draft until you are happy for it to be merged.




Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature





To run all the test environments in parallel (you need to pip install detox):

detox
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Changelog


v1.0.0dev


	More fleshed-out interface to cosmoHammer, with base classes abstracting some common
patterns.


	New likelihoods and cores that are able to work on any data from the 21cmFAST pipeline.


	Better logging


	Better exception handling


	pip-installable


	Documentation


	Pipenv support


	Full code formatting applied
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21CMMC

[image: _images/21CMMC.svg]
 [https://travis-ci.org/21cmFAST/21CMMC][image: _images/badge.svg]
 [https://coveralls.io/github/21cmfast/21CMMC?branch=master][image: _images/code%20style-black-000000.svg]
 [https://github.com/ambv/black][image: Documentation Status]
 [https://21cmmc.readthedocs.io/en/latest/?badge=latest]An extensible MCMC framework for 21cmFAST.

This code uses semantic versioning [https://semver.org], though this will strictly
begin when v1.0.0 is officially shipped.


	Free software: MIT license





Features


	Seamless integration with emcee-based MCMC.


	MCMC is easily extensible via the addition of different likelihoods using the same underlying data.







Documentation

See https://21CMMC.readthedocs.org.
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